skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pollock, Erik D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT Microbial fermentation is a common form of metabolism that has been exploited by humans to great benefit. Industrial fermentation currently produces a myriad of products ranging from biofuels to pharmaceuticals. About one-third of the world’s food is fermented, and the brewing of fermented beverages in particular has an ancient and storied history. Because fermentation is so intertwined with our daily lives, the topic is easily relatable to students interested in real-world applications for microbiology. Here, we describe the curriculum for a guided inquiry-based laboratory course that combines yeast molecular ecology and brewing. The rationale for the course is to compare commercial Saccharomyces cerevisiae yeast strains, which have been domesticated through thousands of generations of selection, with wild yeast, where there is growing interest in their potentially unique brewing characteristics. Because wild yeasts are so easy to isolate, identify, and characterize, this is a great opportunity to present key concepts in molecular ecology and genetics in a way that is relevant and accessible to students. We organized the course around three main modules: isolation and identification of wild yeast, phenotypic characterization of wild and commercial ale yeast strains, and scientific design of a brewing recipe and head-to-head comparison of the performance of a commercial and wild yeast strain in the brewing process. Pre- and postassessment showed that students made significant gains in the learning objectives for the course, and students enjoyed connecting microbiology to a real-world application. 
    more » « less